Matching Random Colored Points with Rectangles

Feb 20, 2020·
Josué Corujo
,
David Flores-Peñaloza
,
Clemens Huemer
,
Pablo Pérez-Lantero
,
Carlos Seara
· 0 min read
Abstract
Let $S \subset [0,1]^2$ be a set of $n$ points, randomly and uniformly selected. Let $R \cup B$ be a random partition, or coloring, of $S$ in which each point of $S$ is included in $R$ uniformly at random with probability $1/2$. We study the random variable $M(n)$ equal to the number of points of $S$ that are covered by the rectangles of a maximum strong matching of $S$ with axis-aligned rectangles. The matching consists of closed rectangles that cover exactly two points of $S$ of the same color. A matching is strong if all its rectangles are pairwise disjoint. We prove that almost surely $M(n) \geq 0.83 n$ for $n$ large enough. Our approach is based on modeling a deterministic greedy matching algorithm, that runs over the random point set, as a Markov chain.
Type
Publication